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Abstract—Automatic detection of moving objects is an im-

portant task for aerial surveillance. It has been a popular and 

well-studied subject for the computer vision community, but is 

still a challenge. The method we introduce targets surveillance 

low-altitude mini and micro-UAVs. We take advantage of the 

inherent image motion on footage captured by such aerial vehi-

cles. Our method confronts Optical Flow vectors and an estimat-

ed Flow in order to detect independently moving pixels. This 

motion-based approach is robust to operational conditions and to 

the geometric properties of the scene. The efficiency of the meth-

od was computed on the VIVID database. The moving areas 

detected will make the tracking task more robust and efficient. 

Keywords—aerial; UAVs; Moving Object Detection; dense 

optical flow; artificial flow 

I. INTRODUCTION 

The use of Unmanned Aerial Vehicles (UAVs) is rapidly 
growing for civil applications, and quickly became a necessity 
for the military. Computer vision brings a significant advantage 
in terms of functionality and ease of use for the operators. A 
robust moving object detection algorithm is crucial for surveil-
lance UAVs as it allows the operator to rely on an automated 
system that highlights interesting areas for him. Such a particu-
lar function has been widely studied in the research communi-
ty. Many approaches were proposed to achieve it on mini-
UAVs’ images. The limitations for the computer vision algo-
rithms are caused by the intrinsic properties of mini and micro-
UAVs: low altitude, ego-motion, perspective, limited payload 
and also the vast variety of scenes it can encounter (urban are-
as, forest, desert etc…). The inherent problems we need to deal 
with in terms of image processing are: fast and unconstrained 
image motion, change of objects’ appearance, partial or full 
occlusion, parallax, too many or not enough image features, 
and SWaP (Size, Weight and Power) constraints that limit the 
computational capabilities of embedded image processors. 

The work presented in this paper aims to a specific applica-
tion. Our method has been designed to be suitable for aerial 
images captured by low altitude mini-UAVs for surveillance 
and to tackle their aforementioned constraints. 

Many different methods were proposed in the literature dur-
ing the last 15 years. The background modelling approach uses 
a Gaussian mixture model for each pixel. It is widely used in 

video surveillance with fixed cameras, and has been adapted to 
aerial imagery by adding a step of image stabilization or image 
registration to cancel motion [1–4]. It is suitable for wide area 
or high-altitude images because there is a high overlap between 
images due to low image motion, but low-altitude UAVs’ fast 
moving scene need a close to perfect ego-motion compensa-
tion, which is not realistic in operational conditions due to 
previously mentioned limitations. It also induces a latency of 5 
to 20 frames, and is thus not applicable in the targeted applica-
tion. In [5] and [6] Xiao et al. use reference images for geo-
registration by using an external database such as TerraServer 
or GIS. In [5] they then segment the image and use monocular 
structure from motion to estimate the depth of the scene in 
order to identify buildings, roads and trees. It is an efficient 
way of preventing false detections due to parallax but it is also 
computationally intensive and requires a detailed database, thus 
limiting applications to high-resolution satellite reference im-
ages. A popular temporal approach is the track before detect 
approach [7–9]. The principle is to generate tracklets using 
interest points, those tracklets are then analyzed using temporal 
and spatial clustering scheme to output moving objects. This 
needs to buffer images and thus leads to a delay. In addition, as 
it relies entirely on automatic feature selection, it cannot be 
robust to the diversity of textureless scenes a UAV can encoun-
ter. 

Another category of methods relies solely on motion ac-
quired from the video stream. The motion is either estimated 
by frame differencing [10], [11], motion layers [12] or Optical 
Flow [13],[14]. Two or three frame differencing is a concept 
that is not robust for our application; depending on the motion 
of the UAV and of the moving objects, the mask will not repre-
sent the entire object and will not have the same shape at all 
from one mask to the next. Optical flow also has limitations, 
but in its dense implementations [15],[16] it keeps the shape of 
a rigid moving object. Aerial images captured from a mini-
UAV are very dynamic; motion is consequently inevitable and 
needs to be taken advantage of. Narayana et al. presented a 
motion segmentation method using the orientation of the flow’s 
vectors [17]. They use a probabilistic model to estimate the 
number of regions in order to properly segment the image. 
Rodrigez-Canosa et al. published a similar approach in [14], 
they compare an Optical Flow to an Artificial Flow computed 
from FAST feature selection and a homography transformation 
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using Parallel Tracking and Mapping (PTAM) algorithm. They 
mentioned limitations such as the need to adapt algorithm pa-
rameters depending on the flight scenario, using a ground fac-
ing camera (in nadir configuration), the calibration phase be-
fore takeoff and the impossibility to recover from an abrupt 
displacement of the UAV leading to a PTAM failure.  

Our method is motion based and also takes advantage of the 
confrontation between an Optical Flow and an Estimated Flow 
while being straight forward and simple to implement. Global 
image motion is inherent to the targeted application of low-
altitude mini-UAVs; it is the result of the displacement of the 
UAV and the gimbal. Our approach uses this fact to efficiently 
segment independently moving objects from the global motion 
of the scene. 

The paper is organized as follows. In section 2 we describe 
the method we use to detect moving objects. In sections 2.1 
and 2.2 we detail first our general segmentation approach using 
the flow vectors’ orientation, and next a derived Artificial 
Flow-based method made to improve robustness for difficult 
cases by using both the vectors’ orientation and amplitude. 
Next in section 3 we present the obtained results on the well-
known VIVID database, and lastly in section 4 we discuss 
future work. 

II. MOVING OBJECT DETECTION 

A. Segmentation using the Optical Flow’s orientation 

The principle of the proposed approach is to identify the ar-
eas of interest only using motion. The input for segmentation is 
a dense Optical Flow field made of vectors with orientation and 
magnitude [15]. Orientation is an efficient cue in our targeted 
application because it is robust to: 1) the lack of planarity of 
the scene and 2) the lack of perpendicularity between the scene 
and the camera’s sensor. Magnitude is highly dependent on the 
angular relation between the camera and the captured scene. 
For example in the case of a sideways camera translation aimed 
downwards from the horizon to a planar and horizontal surface, 
the orientation of the flow field will be constant throughout the 
image, but the relative movement will not be the same. We can 
see in Fig. 1 that the orientation of the vectors describing the 
background, represented by grey values in (d) and shown in 3D 
in (f), are very similar in the whole image; but that the magni-
tude of these vectors, represented by grey levels in (e) and 
shown in 3D in (g), varies greatly (from bottom-left to top-
right) due to the perspective. This effect is an issue for any 
thresholding method we could apply to the corresponding im-
age due to the grayscale gradient. 

We therefore suggest using the vectors’ orientation for our 
purpose. We start from the assumption that low-altitude aerial 
images have a global motion due to the movement of the UAV 
and its gimbal. We then need to estimate this motion to be able 
to segment independently moving objects. Usually, the targeted 
object represents a small part of the image; then we can thresh-
old the orientation map from the average orientation of the 
dense Optical Flow. Therefore, we compute the mean and 
standard deviation of the orientation map, next defined two 
boundary values that will be used as thresholds. Those two 
values are defined by (1) and (2): 

 𝑙𝑜𝑤𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑥̅ − 3.5 𝜎 (1) 

 ℎ𝑖𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑥̅ + 3.5 𝜎 (2) 

with (3) and (4) respectively the mean and standard deviation 
of the Optical Flow vectors’ orientation: 

 𝑥̅ =  
1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1  (3) 

 𝜎 =  (
1

𝑛−1
 ∑ (𝑥𝑖 −  𝑥̅)2𝑛

𝑖=1 )

1

2
 (4) 

The value 3.5 has been determined empirically and was 
found to be efficient for different types of situations encoun-
tered in the VIVID dataset and other proprietary UAV footage; 
it is set and does not need to be changed to fit particular scenar-
ios. 

B.  Segmentation using Artificial Flow 

Aerial surveillance sometimes induces specific scenarios 
for which segmentation using the vectors’ orientation may fail.  

                

Fig. 2. Dense Optical Flow of images (a) 40-41 and (b) 58-59 of Egtest05 from 
VIVID. While image (a) is easy to process with the orientation-based segmen-
tation method, image (b) is more challenging due to the coherency of vectors’ 
orientations (represented here by the same hue).  

Those scenarios arise when only vectors’ magnitude pro-
vides the needed information. For example, the orientation-
based method may fail when either the relative movement of a 
moving object inside a frame is close to zero, or when the ori-
entation of the moving object and of the scene are the same, as 
shown in Fig. 2. Those two cases cannot be properly segment-

Fig. 1. (a) input image 1 (VIVID egtest05, frame00040), (b) input image 2 (frame00041), (c) dense Optical Flow, (d) orientation (in grey levels), (e) magni-

tude (in grey levels), (f) 3D orientation (in false colors) and (g) 3D magnitude (in false colors). 

 

(c) 

(b) 

(a) 

(e) 

(d) (f) 

(g) 

(a) (b) 
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ed using only orientation, thus a solution combining orientation 
and magnitude must be used. 

The method we propose to overcome the problem described 
above is defined by the framework shown in Fig. 3. The mag-
nitude cannot be used right away because of its dependency to 
scene structure and perspective; consequently it has to be com-
pensated. Therefore, we propose to use the inlier keypoints 
matched in two consecutive frames to compute first an affine 
projective transformation. The resulting matrix is then used to 
compute an artificially corrected Optical Flow field (as in 
[14]). Next, before computing the final segmentation step, the 
two flows are subtracted to detect the moving objects from the 
background, thus getting rid of the slope effect on magnitude 
caused by the perspective, as shown in Fig. 4. 

The affine transformation computed from keypoints, de-
spite its limitation to represent only flat planes, is relevant in 
our case because the segmentation method applied in the last 

step is parameterized by an interval of values of  3.5 𝜎, thus 
making the whole method immune to small motion irregulari-
ties caused by noise or parallax. 

 

III. EXPERIMENTAL RESULTS 

As mentioned before we primarily worked on the VIVID 
database [18] (Fig. 5) as it is the closest to our targeted applica-
tion. The ground truth data is available, moreover we can target 
one moving object independently of the others, and resulting 
masks are available for every ten frames. Unfortunately, the 
evaluation website dedicated to VIVID [18] is not accessible. 
All papers using VIVID made therefore their own handmade 

ground truth [19],[13]. We will firstly present results alongside 
the state of the art methods. We computed the metrics as close 
as possible to the methods described in the different papers. In 
a second section, to be able to compare efficiently our detection 
method with future techniques and for better clarity, we decid-
ed nevertheless to use only the ground truth packaged with 
VIVID. It has the advantage to be publicly available and to be 
included with the dataset.  

   

   

   

Fig. 5. Images from the VIVID Dataset. Top line images 0, 550 and 1820 

from EgTest01. Middle line images 0, 760 and 1830 from EgTest04. Bottom 

line images 0, 830 and 1530 from EgTest05. 

VIVID database is a challenging dataset for moving object 
detection and tracking, vehicles are moving along roads or 
open areas and are often occluded by each other or vegetation, 
change of illumination and camera viewpoint cause appearance 
and shape variation. Objects are usually 20 by 50 pixels in 
height and width. The ground truth has also limitations. The 
most challenging limitations of this dataset are: - it only de-
scribes one object per frame even if there is multiple moving 
objects; - it contains several masks with missing data; - often 
several consecutive frames are the same, which doesn’t impact 
the tracking process but impacts the moving objects detection. 
Another important remark: masks do not include the object’s 
shadow (Fig. 6). 

Fig. 4. Magnitude of the dense Optical flow (from left to right): 3D view, Y-
Z view and X-Z view. 1st row: Optical flow’s magnitude. 2nd row: Artificially 

corrected flow’s magnitude. 

Input Images 

Feature matching 

Dense Optical 

Flow 

Artificial Flow 

Subtraction of Optical 

flow and Artificial 

Flow 

Segmentation using 

orientation and mag-

nitude of resulting 

flow 

Fig. 3. Flowchart of the proposed algorithm. 
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Fig. 6. (at left) result of our moving object detection method, (at the center 

and at right) the red area represents the result of our method, the yellow area 

represents the ground truth, and the green area represents the ground truth 
pixels not detected by our method (the right image corresponds to a zoom on 

the car on the left part of the center image). 

In the following section we will compare to the state of the 
art with different metrics, firstly with a Correct detection Ratio 
and Miss Detection Ratio and then the overlap area between the 
detected object(s) and the ground truth. 

Hasan et al. present their technique in [20]. After a video 
stabilization step based on a homography, they use motion and 
appearance cues to detect moving regions. A tracking before 
detection framework is used to generate tracklets that will be 
afterwards merged using graphs. They compute metrics as 
follows:  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑏. 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑏. 𝑜𝑓 𝑆𝑦𝑠𝑡𝑒𝑚 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

 

𝑀𝑖𝑠𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑏. 𝑜𝑓 𝑀𝑖𝑠𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑏. 𝑜𝑓 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

with a correct detection being a detection having at least a 50% 
overlap with the ground truth. We compare our method with 
Hasan’s GMAC (Geometric, Motion and Appearance Con-
straints aerial video tracker) [20], and four other trackers: MIL 
(Multiple Instance Learning) [21], OAB1 (Online Adaboost) 
[22], OAB5 (modified Online Adaboost) [21], and MS+PF 
(Mean Shift Particle Tracker) implemented by [20] in Fig. 7 
and 8. 
 

 

Fig. 7. Correct detection ratio computed according to [20] and compared with 

state of the art techniques : Hasan’s GMAC [20], MIL [21], OAB1 [22], 
OAB5 [21], and MS+PF [20] 

EgTest 01, 04 and 05 were chosen because they are chal-
lenging sequences with common operational scenarios. Eg-
Test04 has object appearance and size change along with target 
occlusions. EgTest01 is favorable to tracking techniques as 
there are no occlusions, but appearance and size change are still 
present. And EgTest05 has a lot of targets in trees’ shadows 

and parallax robustness can be tested with the tall trees and the 
lack of a flat ground plane. 

 

Fig. 8. Miss detection ratio computed according to [20] and compared with 
state of the art techniques : Hasan’s GMAC [20], MIL [21], OAB1 [22], 

OAB5 [21], and MS+PF [20] 

The Correct Detection Ratios obtained on the tested VIVID 
dataset sequences (Fig. 7) are comparable to the state of the art 
methods while having lower Miss Detection Ratios (Fig. 8), 
demonstrating the efficiency of our moving object detection 
method. 

Siam et al., in [19], [23] and [24], compared their methods 
with tracking techniques such as Mean Shift [25], Fg/Bg Ratio 
[25], [26], Variance ratio [27], Peak difference [27], and Adap-
tive tracker [28]. The computed average overlap is the average 
of the percentage of overlap between the bounding box of the 
ground truth and the bounding box of the tracked object for 
every 10

th
 frame. 

In Fig. 9, despite our detection-only method without any 
tracking scheme, we perform better average overlaps compare 
to the other techniques. 

 

Fig. 9. Average overlap compared to six state of the art tracking techniques : 
Mean Shift [25], Fg/Bg Ratio [25], [26], Variance ratio [27], Peak difference 

[27], Adaptive tracker [28], and Moving Target Detection [23]. 

Next section concentrates of moving object detection with-
out tracking. We compared two Optical Flow based methods 
with ours. Considering the limitations and the remark men-
tioned above about VIVID, we computed the recall and preci-
sion values as follows. As only one object is described in the 
ground truth, we only considered the detected region(s) corre-
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sponding to this object. For example in Fig. 6, our method 
detects two objects. As the car on the right part is not described 
in the VIVID database’s ground truth masks, we did not take it 
into account in the computation of the recall and precision (as 
defined in [19]). Results for three sequences of the VIVID 
dataset are presented in Fig. 10 and 11: 

 

Fig. 10. Recall values obtained using the VIVID database and the ground 

truth. Blue: Vector’s orientation, Red: Vector’s orientation and magnitude and 

Green: Vector’s orientation and magnitude using Artificial Flow. 

 

Fig. 11. Precision values obtained using the VIVID database and the ground 

truth. Blue: Vector’s orientation, Red: Vector’s orientation and magnitude and 
Green: Vector’s orientation and magnitude using Artificial Flow. 

Our results are comparable to the ones introduced in [19], 
[13] and [24], but unlike them, we used in our evaluation the 
regular ground truth provided with VIVID, which does not 
include the object’s shadow. This impacts our results by a 
precision loss due to the shadow. In our motion detection based 
approach the shadow of objects are an integral part of the 
moving objects since it has the same behavior. If we remove 
the shadow from the objects as described in [29], the evaluation 
results are significantly better, gaining up to a factor 3 on 
precision, and exceed the performance of other methods 
introduced in [19], [13] and [24].  

     

Fig. 12. Result of our moving object detection method, the red area represents 

the result of our method, the yellow area represents the ground truth. The 

center image corresponds to a zoom on the car corresponding to the ground 
truth. The right image corresponds to the same room but here before moving 

detection cast shadows were removed. 

For example, in Fig. 12, before motion detection we applied 
a pre-processing step to remove the cast shadow related to cars 
in order to perform a more fair comparison in regards to the 
ground truth. The obtained results are now significantly higher 
in terms of precision and prove that our method, despite lower 
recall values, is efficient. 

Our method has also shown to be robust to parallax, we can 
see in Fig. 6 that the tall trees are not detected as moving ob-
jects, same remark in Fig. 10, the poles are not detected either. 
The best example is shown in Fig. 13 on images from Seq1 of 
VIVID. We can distinctly see the water tower structure detect-
ed as moving differently from the background on the Optical 
Flow, but our method still manages to correct it with the Artifi-
cial Flow in order to detect only the proper objects. We achieve 
73% of average overlap on Seq1. 

   

   

   

Fig. 13. Images 900 (top line), 992 (middle line) and 1257 (bottom line) from 

the VIVID Dataset Seq 1. Left column images are Optical Flows, middle 
columns are Artificial Flow and right columns are the Moving Object Detec-

tion result. Green boxes represent the ground truth and blue bounding boxes 

represent our result, red highlighted areas are pixel-wise result. 

If we keep in mind that we do not have any tracking 
scheme, and that the computation is performed pixelwise and 
does not include higher level interpretations, we can claim that 
the proposed method is efficient. In some applications it does 
not matter if the detection method is sensitive to cast shadows, 
in most cases the objective is only to localize moving objects in 
a sequence and not to segment each object perfectly. 

IV. CONCLUSION AND FUTURE WORK 

We developed a method capable of detecting independently 
moving objects from aerial images. We took advantage of the 
constant motion on such aerial footage. The confrontation 
between an Optical Flow and an estimated Flow makes our 
approach efficient, untroubled by scene geometry such as per-
spective, and also demonstrated robustness to parallax. Our 
results presented on the VIVID database are comparable to the 
state of the art methods despite the fact that we achieved a 
pixelwise detection and did not benefit from any kind of track-
ing scheme. This method has also been tested on proprietary 
UAV footage and may be used for monitoring purpose. 
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The work presented here is not yet running in real time, but 
can be if adapted to run on GPU. We have planned to add a 
tracking scheme to our detection method that will take the 
detected objects as input to improve the monitoring task. We 
have also planned to work with an estimated Flow method 
based not on image keypoints but estimated from the onboard 
sensors and a digital elevation map to further improve the ro-
bustness of the detection and make it faster. 
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